Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xian-Ming Zhang,^a Rui-Qin Fang,^a Hai-Shun Wu^a and Seik Weng Ng^b*

^aSchool of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.007 Å R factor = 0.054 wR factor = 0.131 Data-to-parameter ratio = 15.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

catena-Poly[[aquamanganese(II)]-di-μ-4-pyridylthioacetato-κ⁶O,O':N;N:O,O']

The Mn atom and the coordinated water molecule in the title compound, $[Mn(C_7H_6NO_2S)_2(H_2O)]_n$, lie on a twofold axis; the Mn atom is chelated by the carboxyl –CO₂ units and is also coordinated by the pyridyl N atoms of two adjacent anionic groups in a seven-coordinate *trans*-pentagonal bipyramidal geometry. The polymeric chain runs in a zigzag manner along the *c* axis, and neighboring chains are linked into a hydrogenbonded layer structure.

Comment

The reaction of a divalent transition metal ion with the anion of 4-pyridylthioacetic acid affords different products depending on the reaction conditions and the nature of the metal ion. Under hydrothermal conditions, the reaction with Zn^{2+} affords polymeric $[Zn(C_7H_6NO_2S)_2]_n$ in which the metal atom is four-coordinate in a tetrahedral environment, the metal atom being linked to two N and two O atoms (Zhang et al., 2003). On the other hand, the Ni^{II} derivative exists as a zwitterionic compound, $[Ni(C_7H_6NO_2S)_2(H_2O)_4]$, in which the metal atom is coordinated by four water molecules and the pyridyl N atom of the anionic group; the metal atom exists in an all-trans octahedral geometry (Zhang et al., 2004). In the present study, the Mn^{II} derivative is coordinated by only one water molecule, but the coordination number is seven as the two carboxyl $-CO_2$ units behave in a chelating mode; the donor set is completed by the pyridyl N atoms of two adjacent anions (Fig. 1) that occupy the apical sites of the pentagonal bipyramidal polyhedron. Bridging gives rise to the formation of a linear zigzag chain that runs along the c axis (Fig. 2); adjacent chains are linked by a hydrogen bond $[O1w \cdots O1^{i} =$ 2.781 (4) Å; symmetry code: (i) -x, y - 1, $\frac{1}{2} - z$] into layers.

Seven-coordinate Mn complexes are relatively less common than six-coordinate Mn complexes; in fact, there appears to be only one example of an MnN_2O_5 fragment in which four of the O atoms belong to a pair of carboxyl $-CO_2$ units. The dinuc-

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 5 January 2004 Accepted 7 January 2004 Online 17 January 2004

Figure 1

ORTEPII (Johnson, 1976) plot of a fragment of the $[Mn(C_7H_6NO_2S)_2(H_2O)]_n$ chain, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2

ORTEPII (Johnson, 1976) plot of the pyridyl-bridged zigzag $[Mn(C_7H_6NO_2S)_2(H_2O)]_n$ chain. The chains are linked by hydrogen bonds into layers.

lear 2,2'-bipyridine-chelated bicyclo[2.2.1]hept-5-ene-2-*exo*,3*exo*-dicarboxylate also features a coordinated water molecule $[Mn-O_{water} = 2.208 (1) \text{ Å}]$; the N atoms of the chelating ligand occupy adjacent sites of the pentagonal plane (Baumeister & Hartung, 1997).

Experimental

A mixture of manganese acetate tetrahydrate (0.25 g, 1 mmol), 4pyridylthioacetic acid (0.20 g, 1.2 mmol) and imidazole (0.03, 0.5 mmol) in water (7 ml) was treated with several drops of 2 N sodium hydroxide to a pH of approximately 6. The solution was placed in a 15 ml Teflon-lined stainless-steel bomb, which was heated at 433 K for 96 h. Colorless crystals of the title compound were obtained in about 40% yield; the imidazole component was not incorporated into the molecule.

Crystal data

$[Mn(C_7H_6NO_2S)_2(H_2O)]$	$D_x = 1.693 \text{ Mg m}^{-3}$
$M_r = 409.33$	Mo $K\alpha$ radiation
Monoclinic, $C2/c$	Cell parameters from 950
a = 21.595 (3) Å	reflections
b = 6.4904 (8) Å	$\theta = 2.5-24.7^{\circ}$
c = 15.611 (2) Å	$\mu = 1.11 \text{ mm}^{-1}$
$\beta = 132.774 \ (1)^{\circ}$	T = 298 (2) K
$V = 1606.1 (3) \text{ Å}^3$	Block, colorless
Z = 4	$0.09\times0.08\times0.06~\text{mm}$

Data collection

Bruker SMART APEX area- detector diffractometer φ and ω scans Absorption correction: multi-scan (<i>SADABS</i> ; Sheldrick, 1996) $T_{\min} = 0.525, T_{\max} = 0.936$	1692 independent reflections 1419 reflections with $I > 2\sigma(I)$ $R_{int} = 0.034$ $\theta_{max} = 27.0^{\circ}$ $h = -27 \rightarrow 27$ $k = -8 \rightarrow 5$
4507 measured reflections	$l = -19 \rightarrow 19$
Refinement	
Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.054$ $wR(F^2) = 0.131$ S = 1.12 1692 reflections 111 parameters H-atom parameters constrained	$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.0629P)^2 \\ &+ 0.9714P] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta\rho_{\rm min} = -0.38 \ {\rm e} \ {\rm \AA}^{-3} \end{split}$

Table 1

Selected geometric parameters (Å, °).

Mn1-O1	2.378 (3)	Mn1-N1 ⁱ	2.276 (3)
Mn1-O2	2.280 (2)	Mn1-N1 ⁱⁱ	2.276 (3)
Mn1 - O1w	2.218 (4)		
O1-Mn1-O1 ⁱⁱⁱ	74.5 (1)	O2-Mn1-O2 ⁱⁱⁱ	173.3 (1)
O1-Mn1-O2	56.1 (1)	O2-Mn1-O1w	86.7 (1)
O1-Mn1-O2 ⁱⁱⁱ	130.6 (1)	O2-Mn1-N1 ⁱ	90.1 (1)
O1 - Mn1 - O1w	142.8 (1)	O2-Mn1-N1 ⁱⁱ	90.2 (1)
O1-Mn1-N1 ⁱ	88.0 (1)	$O1w-Mn1-N1^{i}$	92.6 (1)
O1-Mn1-N1 ⁱⁱ	87.9 (1)	N1 ⁱ -Mn1-N1 ⁱⁱ	174.9 (2)

Symmetry codes: (i) -x, 1 - y, 1 - z; (ii) x, 1 - y, $z - \frac{1}{2}$; (iii) -x, y, $\frac{1}{2} - z$.

A dimensionless value $\mu \times 2r = 0.10$ was used in the absorption correction. The H atoms were placed at calculated positions in the riding-model approximation, with C-H = 0.98 Å for aliphatic H atoms, C-H = 0.93 Å for aromatic H atoms and O-H = 0.82 Å; the displacement parameters were tied to those (U_{eq}) of the parent atoms by a factor of 1.2. The H atom belonging to the O1w water molecule, which lies on the twofold axis, was generated by the HFIX 147 instruction in *SHELXL97* (Sheldrick, 1997).

Data collection: *SMART* (Bruker, 2001); cell refinement: *SAINT* (Bruker, 2001); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL*97.

We thank Shanxi Normal University and the University of Malaya for generously supporting this study.

References

- Baumeister, U. & Hartung, H. (1997). Acta Cryst. C53, 1246-1248.
- Bruker (2001). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2003). Acta Cryst. E59, m1194–m1195.
- Zhang, X.-M., Fang, R.-Q., Wu, H.-S. & Ng, S. W. (2004). Acta Cryst. E60, m135–m136.