Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xian-Ming Zhang, ${ }^{\text {a }}$ Rui-Qin
Fang, ${ }^{a}$ Hai-Shun Wu^{a} and Seik Weng Ng ${ }^{\text {b }}$ *

${ }^{\text {a }}$ School of Chemistry and Material Science, Shanxi Normal University, Linfen 041004, People's Republic of China, and ${ }^{\text {b }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: seikweng@um.edu.my

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.054$
$w R$ factor $=0.131$
Data-to-parameter ratio $=15.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aquamanganese(II)]-di- μ -4-pyridylthioacetato- $\left.\kappa^{6} O, O^{\prime}: N ; N: O, O^{\prime}\right]$

The Mn atom and the coordinated water molecule in the title compound, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, lie on a twofold axis; the Mn atom is chelated by the carboxyl $-\mathrm{CO}_{2}$ units and is also coordinated by the pyridyl N atoms of two adjacent anionic groups in a seven-coordinate trans-pentagonal bipyramidal geometry. The polymeric chain runs in a zigzag manner along the c axis, and neighboring chains are linked into a hydrogenbonded layer structure.

Comment

The reaction of a divalent transition metal ion with the anion of 4-pyridylthioacetic acid affords different products depending on the reaction conditions and the nature of the metal ion. Under hydrothermal conditions, the reaction with Zn^{2+} affords polymeric $\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\right]_{n}$ in which the metal atom is four-coordinate in a tetrahedral environment, the metal atom being linked to two N and two O atoms (Zhang et al., 2003). On the other hand, the $\mathrm{Ni}^{\mathrm{II}}$ derivative exists as a zwitterionic compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]$, in which the metal atom is coordinated by four water molecules and the pyridyl N atom of the anionic group; the metal atom exists in an all-trans octahedral geometry (Zhang et al., 2004). In the present study, the $\mathrm{Mn}^{\text {II }}$ derivative is coordinated by only one water molecule, but the coordination number is seven as the two carboxyl $-\mathrm{CO}_{2}$ units behave in a chelating mode; the donor set is completed by the pyridyl N atoms of two adjacent anions (Fig. 1) that occupy the apical sites of the pentagonal bipyramidal polyhedron. Bridging gives rise to the formation of a linear zigzag chain that runs along the c axis (Fig. 2); adjacent chains are linked by a hydrogen bond $\left[\mathrm{O} 1 w \cdots \mathrm{O} 1^{\mathrm{i}}=\right.$ 2.781 (4) \AA; symmetry code: (i) $\left.-x, y-1, \frac{1}{2}-z\right]$ into layers.

Seven-coordinate Mn complexes are relatively less common than six-coordinate Mn complexes; in fact, there appears to be only one example of an $\mathrm{MnN}_{2} \mathrm{O}_{5}$ fragment in which four of the O atoms belong to a pair of carboxyl $-\mathrm{CO}_{2}$ units. The dinuc-

Figure 1
ORTEPII (Johnson, 1976) plot of a fragment of the $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ chain, with displacement ellipsoids drawn at the 50% probability level. H atoms are drawn as spheres of arbitrary radii.

Figure 2
ORTEPII (Johnson, 1976) plot of the pyridyl-bridged zigzag $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ chain. The chains are linked by hydrogen bonds into layers.
lear $2,2^{\prime}$-bipyridine-chelated bicyclo[2.2.1]hept-5-ene-2-exo,3-exo-dicarboxylate also features a coordinated water molecule $\left[\mathrm{Mn}-\mathrm{O}_{\text {water }}=2.208(1) \AA\right]$; the N atoms of the chelating ligand occupy adjacent sites of the pentagonal plane (Baumeister \& Hartung, 1997).

Experimental

A mixture of manganese acetate tetrahydrate $(0.25 \mathrm{~g}, 1 \mathrm{mmol}), 4-$ pyridylthioacetic acid $(0.20 \mathrm{~g}, 1.2 \mathrm{mmol})$ and imidazole (0.03 , 0.5 mmol) in water (7 ml) was treated with several drops of 2 N sodium hydroxide to a pH of approximately 6 . The solution was placed in a 15 ml Teflon-lined stainless-steel bomb, which was heated at 433 K for 96 h . Colorless crystals of the title compound were obtained in about 40% yield; the imidazole component was not incorporated into the molecule.

Crystal data

$\left[\mathrm{Mn}_{1}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	$D_{x}=1.693 \mathrm{Mg} \mathrm{m}^{-3}$
$M_{r}=409.33$	
Monoclinic, $C 2 / c$	Mo $\alpha \alpha$ radiation
$a=21.595(3) \AA$	Cell parameters from 950
$b=6.4904(8) \AA$	reflections
$c=15.611(2) \AA$	$\theta=2.5-24.7^{\circ}$
$\beta=132.774(1))^{\circ}$	$\mu=1.11 \mathrm{~mm}^{-1}$
$V=1606.1(3) \AA^{3}$	$T=298(2) \mathrm{K}$
$Z=4$	Block, colorless
	$0.09 \times 0.08 \times 0.06 \mathrm{~mm}$

$\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{NO}_{2} \mathrm{~S}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=409.33$
Mocinic, C2/c
$a=21.595(3) \mathrm{A}$
$c=15.611$ (2) \AA
$\beta=132.774$ (1) ${ }^{\circ}$
$Z=4$
$D_{x}=1.693 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 950 reflections
$\theta=2.5-24.7^{\circ}$
$\mu=1.11 \mathrm{~mm}^{-1}$
Block, colorless
$0.09 \times 0.08 \times 0.06 \mathrm{~mm}$

Data collection

Bruker SMART APEX area-
detector diffractometer φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.525, T_{\text {max }}=0.936$
4507 measured reflections
1692 independent reflections
1419 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.034$
$\theta_{\text {max }}=27.0^{\circ}$
$h=-27 \rightarrow 27$
$k=-8 \rightarrow 5$
$l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0629 P)^{2}\right.$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.131$
$+0.9714 P]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.60 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.38 \mathrm{e}^{-3}$
1692 reflections
111 parameters

H -atom parameters constrained
Table 1
Selected geometric parameters ($\AA{ }^{\circ}{ }^{\circ}$).

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.378(3)$	$\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.276(3)$
$\mathrm{Mn} 1-\mathrm{O} 2$	$2.280(2)$	$\mathrm{Mn} 1-\mathrm{N} 1^{1 i}$	$2.276(3)$
$\mathrm{Mn} 1-\mathrm{O} 1 w$	$2.218(4)$		
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1^{i i}$	$74.5(1)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 2^{\mathrm{iii}}$	$173.3(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2$	$56.1(1)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 1 w$	$86.7(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 2^{\text {iii }}$	$130.6(1)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$90.1(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{O} 1 w$	$142.8(1)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 1^{1 i}$	$90.2(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$88.0(1)$	$\mathrm{O} 1 w-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{i}}$	$92.6(1)$
$\mathrm{O} 1-\mathrm{Mn} 1-\mathrm{N} 1^{1 i}$	$87.9(1)$	$\mathrm{N} 1^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1^{\mathrm{ii}}$	$174.9(2)$

Symmetry codes: (i) $-x, 1-y, 1-z$; (ii) $x, 1-y, z-\frac{1}{2}$; (iii) $-x, y, \frac{1}{2}-z$.
A dimensionless value $\mu \times 2 \mathrm{r}=0.10$ was used in the absorption correction. The H atoms were placed at calculated positions in the riding-model approximation, with $\mathrm{C}-\mathrm{H}=0.98 \AA$ for aliphatic H atoms, $\mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H atoms and $\mathrm{O}-\mathrm{H}=0.82 \AA$; the displacement parameters were tied to those ($U_{\text {eq }}$) of the parent atoms by a factor of 1.2 . The H atom belonging to the $\mathrm{O} 1 w$ water molecule, which lies on the twofold axis, was generated by the HFIX 147 instruction in SHELXL97 (Sheldrick, 1997).

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

We thank Shanxi Normal University and the University of Malaya for generously supporting this study.

References

Baumeister, U. \& Hartung, H. (1997). Acta Cryst. C53, 1246-1248.
Bruker (2001). SAINT and SMART. Bruker AXS, Inc., Madison, Wisconsin, USA.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2003). Acta Cryst. E59, m1194-m1195.
Zhang, X.-M., Fang, R.-Q., Wu, H.-S. \& Ng, S. W. (2004). Acta Cryst. E60, m135-m136.

